Backpaper exam - December 26, 2023 B. Math. (Hons.) 2nd year Group Theory Instructor : B. Sury Each question carries 9 points.

Q 1.

(i) Prove that a group is finite if, and only if, it has only finitely many different subgroups.

(ii) Let p be a fixed prime number. Consider the infinite group G consisting of all p-power roots of unity. Prove that each proper subgroup of G must be finite and cyclic.

Q 2.

(i) If G is a finite group, and H is a proper subgroup, prove that $G \neq \bigcup_{x \in G} Hx^{-1}$.

(ii) If $G = GL_2(\mathbb{C})$ and H is the subgroup of G that consists of the matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, prove that $G = \bigcup_{x \in G} Hx^{-1}$.

Hint for (i). If xH = yH, then $xHx^{-1} = yHy^{-1}$.

Q 3.

(i) Let G be a finite, nonabelian group generated by two elements x, y of order 2. Prove that G is isomorphic to a dihedral group.

(ii) Consider the functions f(x) = -x and g(x) = x + 1. Under composition of functions, consider the group $Aff(\mathbb{Z})$ of functions generated by the two functions f and g. Prove that $Aff(\mathbb{Z})$ is an infinite, nonabelian group generated by two elements of order 2.

Hint for both parts. Consider the order of the product element xy in (i) and $f \circ g$ in (ii).

Q 4.

(i) If an abelian group A is isomorphic to the direct product $\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \times \mathbb{Z}_{d_r}$ where d_i 's are positive integers satisfying $d_1|d_2|\cdots|d_r$, then the d_i 's are uniquely determined by G.

(ii) Prove that a group of order 1365 cannot be simple.

Hint for (i). Look at the sets $\{a \in A : d_i A = 0\}$.

Hint for (ii). Look at p-Sylow subgroups.

Q 5.

(i) If G is a finite, nilpotent group, and H is a proper subgroup, prove that $N_G(H) \neq H$.

(ii) Give an example of a non-nilpotent group (could be infinite) having a normal subgroup N such that both N and G/N are nilpotent. Hint for (ii). Any example for G in (ii) would be solvable.